Appearance
Search Index
The Search Index is essential to your search functionality. It is here that you define what fields should be searchable for a given entity type (products, product variants, product categories, content, content categories), as well as defining the weight of these searchable fields. Without a search index, your search functionality will not function as intended, as the Relewise search index by default only looks at ID
and DisplayName
, and nothing else. As such, Relewise highly recommends taking the time to going through the search index and configuring it according to your needs.
Different entities come with certain fields as standard (most commonly DisplayName
and ID
), but you should add whatever data keys that are relevant for your entities into the index, so that you can assign weight to them. To enter a data key into the index, simply enter the name into the available field, and assign it a weight and prediction source type (explained below).
On Having More Than One Search Index
By default, Relewise provides you with one search index for you to configure. In the vast majority of cases, this is sufficient to give you the control you need, even with multiple languages to configure. If, however, you find that you require more than one search index, we urge you to reach out to us and discuss the possibilities of having another index added to your administration.
Search Index Weight
Weight is the score assigned to a data field to indicate how prominent the field should be in a search. Weight is an integer from 1
to 250
, and is measured from highest to lowest, without consideration for the proportions of the values themselves. This means that a value only needs to be higher or lower than the other weights; it does not matter whether a field is weighted 10 or 100 points higher than the next highest one, it still amounts to the same weighting result.
Weight affects a search term only once. A search term will not gain additional weight from being present in multiple fields, and only gains the weight of the most prominent field it is associated with. In a search with multiple terms, each unique term can gain its own weight, which can help increase search accuracy.
When weighting fields, it can be useful to set some fields at the same weight value. Weighting works in tandem with the Relewise personalization engine, and this method allows the personalization to push the more relevant results to the top of the search. This is also a useful tool if you want to test which of two fields might be more useful to your users; set them as the same weighting, and compare the results of searches after a few weeks.
To avoid cluttering search results, it is recommended to set the weight of any field containing a lot of text (such as product descriptions or the body of a content page) to 1
.
Prediction Source Types
An Index also controls the Prediction Source Types, which is used to define how Relewise's predictive search function should interact with different data fields on an entity. The different source types are as follows:
- Disabled: Data from this field is not included in Predictive Search Matching.
- Individual Words: Data from this field is matched on a whole word basis, eg.
dog
matchesdog
but notdoghouse
- Partial Word Sequence: Data from this field is matched sequentially, but only one word at a time, eg.
ja
predictsjamie
but does not suggestJamie Oliver
- Complete Word Sequence: Data from this field is matched sequentially for the entire string, eg.
ja
predictsJamie Oliver Frying Pan 28cm
Match Types
The index can be configured with five different match type settings. Match Types define how a particular field is treated by the search engine, and helps shape the behavior of your Relewise search.
Match Types: Compound
The Compound
match type allows the search to match on indexed data, where the queried term is found to be part of a compound word within the indexed data; this returns matches for the compounded word.
Usecase example
User searches for dog house
. The Compound setting identifies the word doghouse
in the index, and returns search results for the compounded word.
Match Types: Exact Match
The Exact Match
match type allows the search to match on indexed data, where the queried term matches exactly with the datakey value of the entity.
Usecase example
The user searches for dog house
, which matches on the DisplayName for the entity Dog House
.
Match Types: Starts With
The Starts With
match type allows the search to match on indexed data, where the queried term starts with the datakey value of the entity.
Usecase example
The user searches for dog
, which matches on the start of the DisplayName for the entity doghouse
.
Match Types: Ends With
The Ends With
match type allows the search to match on indexed data, where the queried term ends with the datakey value of the entity.
Usecase example
The user searches for house
, which matches on the end of the DisplayName for the entity doghouse
.
Match Types: Fuzzy
The Fuzzy
match type allows the search to match on indexed data, where the queried term is spelled incorrectly.
Usecase example
The user searches for doghose
, which matches closely to the DisplayName for the entity doghouse
.